Latest News

Browse Articles by Topics

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
6 Results

It’s about compliance and safety. Not enforcement.

The principal aim of a successful truck enforcement program is not to catch offenders. The aim is compliance — and improved road safety.

The goal of successful enforcement programs is to not catch offenders. Despite public perception, and among the mainstream media, revenue-raising is not the primary aim of enforcement. The aim is compliance — and improved road safety.

Case studies demonstrate how the introduction of commercial vehicle enforcement tech, or compliance tech, has had a positive influence on operator and fleet safety standards. Over time,the number of citations has decreased significantly. Drivers and fleet owners/operators come to understand that not complying is simply not worth it.

Not all failures to meet regulations are due to criminality or willful dismissal of what should be done. Often, it is the result of lax behavior which needs to be rectified—to ensure that a vehicle is safe to use is not time wasted, or one could think of it as time better spent doing more important things.

THE TECH:

Improved compliance. Thanks to tech.

Virtual Weigh-In-Motion (VWIM) stations can improve compliance across a wider geographic area, as well as flag an wide variety of infringements and safety hazards. They can dramatically increase the distances at which pre-screening can be successfully and consistently carried out, extending the efficiencies and capabilities of enforcement officials, whose numbers and availability can often be limited. 

VWIM can also be used to solve a long-standing problem associated with weight enforcement—avoidance of inspection by choosing alternatives to primary and preferred routes.

The result is weight-compliant vehicles constrained to those routes and road structures designed to carry them, and far less damage to secondary and tertiary roads by large, illegally operating vehicles.

THE RESULT:

Virtual weigh stations. No need for inspection stops. 

Quarterhill’s Virtual Weigh Station combine VWIM with other technologies to deliver even more vehicle safety information to enforcement personnel without requiring stops for inspection.

For instance, over-dimension vehicles are a major safety concern for many agencies. They can damage bridges, cause accidents and disrupt traffic flow. Over-height, over-width, and over-length detection using vehicle dimensioning technology is an effective way to reduce bridge strikes by those vehicles.

Virtual_Weigh_Station_Weigh_In_Motion
A VWS equipped with WIM sensors, over-height detection, and TACS

A virtual weigh station that incorporates vehicle dimensioning improves road safety and helps prevent costly damage to bridges, vehicles, and their drivers. Enforcement agencies can monitor for vehicles that pose a risk so those vehicles can be stopped before they do any damage.

Vehicle speed data. Gathered and published by Bordeaux Métropole.

By publishing data from Icoms I-SAFE 2 radar speed signs, a French authority increases transparency and helps meet the nation’s commitment to Open Data.

To improve road safety, the Bordeaux Métropole (a French public authority) took unprecedented steps to dive deeper into traffic flows by installing I-SAFE 2 radar speed display signs. By publishing data from them, the authority provides transparency and helps meet the nation’s commitment to Open Data.

Bordeaux_Metropole

THE TASK:

Gather vehicle speed data. Put it to good use. 

Bordeaux Métropole has used I-SAFE radar speed signs to manage traffic for quite some time. They recently acquired additional new I-SAFE 2 radar speed display signs and installed them at critical points throughout their roadways to alert drivers of their (excessive) speed. 

The radar speed signs have proven to be extremely effective at increasing road safety. While they’re designed to display the speed of vehicles approaching them, they also gather the measured vehicles’ speeds and convert that into invaluable and actionable data—revealing the “speeding” behavior of motorists.

Radar_Speed_Sign_Locations
I-SAFE 2 radar speed sign locations

THE TECH:

Radar speed signs. Open data network.

Two new features allow I-SAFE signs to transfer, and publish the speed data they collect. 

  1. 3G modems send the data to the Icoms Detections server on a regular basis. 
  2. An API developed by Icoms Detections in close collaboration with Bordeaux Métropole that allows the public authority to automatically extract data from the signs to populate its data warehouses and publish the data on its platform.
Open_Data_Platform
Average speeds displayed by location


The data collected includes the speed, direction of travel, and time of passage. Therefore, identifying peak hours or times is straightforward when the speed is highest. The comparisons are easy, and it's simple to see a picture of how traffic is responding.

Bordeaux Métropole makes the following data available on an hourly basis:

  • Average/minimum/maximum speed
  • Standard deviation (speed)
  • Percentile (speed)
  • Volume

THE TRUTH:

A commitment to sharing data. France is leading the way.

France is one of the countries leading the way in opening up public data, having passed the Digital Republic act in 2016. The country ranks as one of the top five in the world for open data, scoring highly for government action. Publishing public data has the ultimate objective of helping to innovate and create new services in the interest of all. Mobility data such as those reported by behavior-modifying radar speed signs are useful in more ways than one, both for citizens and for developers of third-party applications.

Bordeaux Métropole and Icoms Detections worked closely together to develop this solution, which is perfectly in line with their mutual desire to solve for smarter cities.

Safer bike lanes across Amsterdam. Thanks to radars and accurate data collection.

Multisensors integrates the Icoms TMA-3B3 radar/lidar bicycle counter into its Signum solution used by the City of Amsterdam for high-quality bicycle data.

Cycling is synonymous with daily European life—especially in Amsterdam, where 400,000 cyclists ride to their destinations every day. However, where there are cities full of cyclists, there’s congestion. Our Dutch partner, Multisensors, asked Ewald Dijkstra, Senior Advisor of Mobility Research at the City of Amsterdam, what challenges they face in the field of bicycle mobility, and why they chose the Signum bicycle counter to help solve the problem.

THE TASK:

Quality bicycle data collection. Essential to solving congestion.

Dijkstra pointed out that while motorized traffic is fairly well known, there is very little data on bicycle traffic, and what does exist—in the way of data—consists mostly of snapshots. He explained that the tech used so far, such as induction loops or pneumatic tubes, are unreliable or too fragile for permanent use. The Amsterdam municipality needs an accurate picture (as opposed to snapshots), based on reliable data, of the actual bicycle congestion across the city. The challenge is to understand the bottlenecks and make the cycle paths safer by optimizing the flow of cyclists.

THE TEST:

Studies conducted. Radars tested. 

Dijkstra conducted a comparative study at a test site and found that the Signum radar was more reliable than manual counting. The accuracy is well over 90%, even during peak hours and bicycle congestion. The data (volume, speed, direction) is naturally anonymous and accessible online in real time. A game, and accurate-data-collecting-changer. 

THE TECH:

Icoms Signum Radars. Doppler and Lidar tech.

The tech behind Icoms Signum is the TMA-3B3, designed and manufactured in Belgium by Icoms Detections, with multi sensors that integrate into a customized housing. This sensor combines a Doppler radar and a lidar. The lidar helps separate individual bicycles from groups, making the product particularly accurate in counting.

The radar communicates with a modem via an RS-232 link, and a solar panel makes it autonomous and functional 24/7/365, enabling continuous measurement. This allows the city of Amsterdam to understand the relative ridership at the various measurement points, considering external factors influencing bicycle traffic, such as periodic events or weather conditions.

Sources:
https://www.verkeersnet.nl/mobiliteitsbeleid/46017/signum-fietsteller-van-multisensors-geeft-inzicht-in-fietsmobiliteit/

https://www.multisensors.nl/klantcase/gemeente-amsterdam/